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Abstract: Location privacy in Mobile Social Networks (MSNs) has generated significant
interest in recent years, with many proposed methods to address the problem. Commercial
solutions to this problem have suggested designing better ways for users to determine when
to report their locations, while academic researchers have proposed solutions that involve
deploying trusted third party servers to protect user privacy. In this paper, we showed that
simply omitting location updates does not provide adequate privacy protections, especially
in situations where the friendship relationships between users are known. We proposed a
fake location update algorithm that allows a user to protect his privacy. A key feature of
our approach is that it can be adopted without the use of any third party services, making
them more practical. We evaluate our approach using extensive simulation experiments.
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1 Introduction

The increasing popularity of smartphones has led to the
rise of Mobile Social Networks (MSNs). An MSN is
a combination of online social networks and location-
based services, and can be used to provide many new
services, such as a friend notification service that alerts a

user when his friends are near his location. In order to
provide these services, the MSN provider has to collect
location information from users and their friends. This
has led to the concern that such information may pose
a privacy threat since users may be unaware that they
have revealed some sensitive information until after the
fact.

Copyright © 2011 Inderscience Enterprises Ltd.
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One technique to protect privacy is to give users
more control over when their locations are updated. The
intuition is that individuals are the best arbiters of what
locations are private. Therefore, simply by allowing a user
the option to not upload his location at such sensitive
locations, we can achieve location privacy. However, this
intuition may not adequately provide location privacy
against an adversary that knows both a user’s historic
location information and his social relationships.

We can illustrate this by using the following example.
Let us consider the map shown in Figure 1(a), where the
center region is a hospital. A user may decide that the
hospital is a sensitive area and may choose not to upload
his location information when he is near the hospital.
Now let us assume that the MSN provider is an adversary
that is seeking to learn more information about the user.
The adversary can use the previously reported locations
to predict the user’s movements and infer that he has
visited the hospital. In addition, we see in Figure 1(b) that
the user is travelling with his friend when he visits the
hospital. The user is careful to not upload his location
information when nearing the hospital, but his friend
does not remember to do so. Since the adversary is aware
of the friendship information, the adversary can use the
friend’s location information to estimate any gaps in the
user’s reporting.

In this paper, we consider the problem of providing
location privacy against an adversary that has access to
the data collected by the MSN provider. We make the
following contributions:

• we are the first to consider an attack where the
adversary uses both the historical trace data and
friendship information to predict a user’s
movements

• our proposed solution utilises Kalman filters to
determine the best fake location to upload so as to
defeat the MSN’s location prediction algorithm

Figure 1 In (a), the dark cells represent reported locations,
while the white cells represent unreported positions.
The number in each cell indicates the observation
sequence. We can see that we still can guess the
positions of a user even if he omits reporting certain
locations. In (b), there are two friends, represented
by black and grey circles. The two friends are
walking together, but the first user (grey circle) does
not report his location from time step 4–6 while his
friend (black circle) does. Using the location
information from the friend, we can still estimate
the user’s location (see online version for colours)

• our solution does not require the use of trusted
third parties, which may be difficult to deploy in the
real world, to provide location privacy protection.

The rest of the paper is organised as follows. Section 2
summarises related works, and Section 3 provides an
overview about Kalman filters, the adversary model, and
our approach to the problem. Our proposed solution is
found in Section 4, and Section 5 contains an additional
discussion. In Section 6, we evaluate our approach, and
Section 7 presents the conclusion of this paper.

2 Related work

We adopt the classification used in Chao and Dongyu
(2010) and divide location privacy research into two
major categories: those that provide anonymity and those
that introduce obfuscation.

Location privacy can be provided via the frequent
changing of pseudonyms (Marco, 2003; Huang et al.,
2005; Freudiger et al., 2009; Jiang et al., 2007) to make
it difficult for adversaries to estimate a user’s trajectory.
The system first defines several special regions named
‘mix zones’. In a mix zone, a number of nodes will
enter the zone and leave the zone. Within each mix zone,
nodes change their pseudonyms at the same time and
do not report their locations within the zones. Since
the changing of pseudonyms among nodes is performed
simultaneously, the adversary cannot get the complete
trajectories of users, thus preserving location privacy.
However, for MSN-type applications, the MSN provider
will still have to know the friendship relationships for
each pseudonym so as to deliver the correct information.
As such, the frequent changing of user IDs may not mask
the user’s identity.

Another technique of providing anonymity is to use
k-anonymity techniques (Kulik et al., 2009; Chow and
Mokbel, 2009; Ouyang et al., 2008; Damiani et al., 2009).
In these solutions, a user will only upload the location
of a region which contains k − 1 neighbours. This will
ensure that the adversary cannot pinpoint the exact
location of a user. The use of k-anonymity in an MSN is
not feasible because the user’s friends can only receive an
approximate area and cannot determine the location of
the user. This will make an MSN less useful.

The other category of location privacy-preserving
techniques is obfuscation. In obfuscation-type solutions,
the user will try to confuse the adversary through
techniques such as injecting noise (Hidetoshi et al.,
2005; Krumm et al., 2007; ?), reporting fewer locations
(Hoh et al. (2007)), reporting false locations (Hidetoshi
et al., 2005), or increasing the intervals between reported
locations (Hoh et al., 2006). Our approach follows
this category of location privacy-preserving techniques.
The difference is that we consider a more powerful
adversary that can utilise friendship information to
better predict user movements. As shown earlier,
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friendship information can be combined with location
information to predict user movements.

A recent paper (Chang et al., 2011) considered
a similar problem involving social relationships and
location privacy. However, that solution only considers
the case of one or two friends travelling together, and
does not provide a solution for multiple friends travelling
as a group. Moreover, paper (Chang et al., 2011) paper
also does not consider the quality of service and energy
issues when there is a group of users. In this paper, we will
present an energy and friendship-based location privacy-
preserving method, and we will also discuss methods of
improving the quality of service if the users are using fake
locations to protect their privacy.

Finally, while some researchers have proposed
cryptographic techniques (Puttaswamy et al., 2010; You
et al., 2007) to protect user privacy, these solutions
generally require the cooperation of the MSN provider.
Since there appears to be little incentive for the MSN
provider to perform such operations, it is unclear how
practical such solutions will be. We do not consider these
solutions in this paper.

3 Overview

In this section, we first briefly describe the system
model and the adversary model. Then, we provide our
location privacy-preserving metric and illustrate how our
proposed method defends against the adversary’s attack.

3.1 System model

Our system consists of an MSN provider and many users.
We divide time into discrete time units; at each time unit,
a user can report his actual location, a fake location, or
no location at all. We assume that friends of a user will
be able to distinguish between a real or fake location. For
instance, a user could label his locations with unique IDs
so that his friends can filter out fake locations. A user
can query the MSN provider for his friends’ location at
any time. However, the request will only be transmitted
to the MSN at a predefined time step. If there are multiple
requests at a time step, the phone will only provide the
nearest location. Table 1 contains the notations used.

Table 1 Notations

K Kalman gain (updating ratio)
H Observation model matrix
F State transition model matrix
I Identity matrix
∆d Extra distance provided by a user at a time step
I(LA; LB) Mutual information between two sets

of locations
H(LB) Entropy of user B’s locations set
H(LB |LA) Entropy of B’s locations set, given user

A’s locations set

We consider an adversary that has control over the
operations of the MSN provider. Thus, the adversary
will have access to all of the location updates and
friendship information stored in the MSN. The adversary
will use this information to filter out fake locations and
to improve any the missing-location predictions.

3.2 Kalman filter

The adversary will use the Kalman filter to estimate
users’ unreported locations. The Kalman filter is a
set of mathematical equations that provide an efficient
computational (recursive) means for estimating the state
of a process in a way that minimises the mean of the
squared error (Welch and Bishop, 1995). Forward and
backward Kalman filling (Lavanya and Elaine, 2004) is a
method, derived from the Kalman filter, to estimate the
missing data within a linear system.

The Kalman filter consists of a predict phase and an
update phase in each time step. In the predict phase, the
filter estimates the state of the current time step from
the estimated state in the previous time step. After the
filter obtains the observation of the current time step, the
algorithm enters into the update phase where it refines
the predicted values by real observations. By recursively
running the two phases, the Kalman filter can compute
the optimal values of the current state in the presence of
noise (Welch and Bishop, 1995).

Kalman filling is a technique which uses the Kalman
filter’s estimated states to represent the missing data.
The Kalman filling algorithm first uses some reasonable
data to pre-fill the missing data at the corresponding
time steps. Then, it applies the Kalman filter to the
data and obtains a set of estimated states for every
time step. Finally, it replaces the pre-filled data by these
estimations. Forward Kalman filling (backward Kalman
filling) uses the data in the ascending (descending) order
of time.

3.3 Adversary location estimation

Algorithm 1 illustrates how an adversary estimates a
user’s location. Since the trajectories are continuous, and
the moving pattern of people can be modelled by a linear
process with noise, the unreported locations in a single
user’s trajectory can be estimated by using forward and
backward Kalman filling.
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The adversary will first provide some synthetic locations
to pre-fill the locations set, based on some outside
knowledge. For example, the missing data can be linearly
interpolated. Then, the interpolated data will later be
used as measurements for the Kalman filter.

The adversary can use social relationships to predict
a location as follows. The adversary will first determine a
distance RS . If the distance between user A and his friend,
user B, is less than RS , the adversary can deem them as
being together. For all MSN friends of A, the adversary
can calculate the percentage of them being together with
A. When A applies an unreported location in a protected
trajectory, the adversary can guess that A is staying with
one of his friends. The partial traces of a user’s friends
can be used as an external location source to estimate the
hidden locations during the use of Kalman filling.

3.4 Location privacy preserving metric

The evaluation metric is the average Kalman filter error
between the predicted results and the actual locations
at each reporting time. An adversary’s error degree can
be calculated as Wadv =

∑
T ‖LocG,LocR‖
∑

amount(T ) , where Wadv

represents the average mistake degree of an adversary’s
guessing; ‖ • ‖ represents the Euclidean distance between
a guessing location LocG and its corresponding real
location LocR; T is the total time of observations;
amount represents the amount of reported locations.
If there are no fake or unreported locations in the
observations, the value of Wadv is 0. The higher the
adversary error degrees are, the safer a user’s location
privacy is.

3.5 Example of proposed Solution

Figure 2 outlines the basic idea of our solution. We
give sequence letters from (a) to (e) to the pictures
in Figure 2 from left to right. Figure 2(a) shows the
original trajectory of a user, and Figure 2(b) shows the
result after using the location omission strategy. After
observing the reported locations of a user, the adversary

can use Kalman filling to estimate the unreported ones
and to guess the whole trajectory, shown as Figure 2(c).
However, instead of not reporting some locations, the
user can report some plausible fake locations, which
makes the estimation of the Kalman filter inaccurate.
If the positions of these fake locations are plausible,
then the adversary cannot filter them out. Although the
adversary can apply the Kalman filter to minimise the
influence of fake locations, the position of our fake
locations can bring about the maximum estimation error
among all other positions. Figure 2(d) and (e) represent
the trajectory after using the fake location strategy and
the Kalman filter estimation result.

4 Proposed solution

Our approach towards providing location privacy is
to report fake location information to the adversary
such that the adversary cannot obtain the user’s real
trajectory. We begin by considering the case of a user
travelling alone, followed by a situation where the user is
travelling with friends.

4.1 User travelling alone

Here, the user is travelling alone without any of his
friends nearby. When choosing fake locations to update,
the user wants to select locations that cannot be easily
filtered out by the adversary. Figure 3 illustrates the
appropriate area of fake locations: reported points
(x0, y0), (x1, y1), and (x2, y2) are three places. As for
place (x1, y1), we want to use another fake location to
replace it. When considering the speed limitation, the fake
location should be located at a point in the intersection
of two speed rotundities.

4.1.1 Relationship between estimation error and
fake location distance

Now suppose that in order to protect the privacy of his
own trace, a user wants to use N% of his locations as fake

Figure 2 An adversary’s estimated results with and without fake locations. (a) real trajectory; (b) reported trajectory; (c)
estimation without fake locations; (d) trajectory of using fake locations and (e) corresponding estimation result
(see online version for colours)
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Figure 3 The position of an optimal fake location (see online
version for colours)

locations. We assume that at time k, the user uses fake
location (x + ∆x, y + ∆y), where x and y represent the
real location. ∆x and ∆y can be thought as some user-
specified noise. Now, we want to calculate the relation
between fake locations and their corresponding estimated
locations. The estimation error of the Kalman filter can
be evaluated by Pk|k. Pk|k is a covariance matrix, which
stores the covariance of the state at time k based on
observations at K. According to the definition of the
Kalman filter, the covariance can be written as follows:

Pk|k = (I − Pk|k−1H
T (HPk|k−1H

T + R)−1H)Pk|k−1,

(1)

where I is an identity matrix, Pk|k−1 is the covariance
of the state at time k based on the past observation at
time k − 1, H is an observing matrix, R is the covariance
of noise, k is a time instance, and HT is the transposed
matrix of H . From this equation, we can see that if the
covariance of noise in a user’s historical location set is
relatively larger, the covariance between observation and
prediction will be greater. In other words, the farther a
fake location is from the real location, the greater the
estimation error will be.

4.1.2 Estimation error of Kalman filter

The Kalman gain (updating ratio) K determines the
trust of a predicting system to its observation and its
predicting result (Welch and Bishop, 1995). From Welch
and Bishop (1995), we know that under conditions where
R is constant, both the estimation error covariance Pk|k
and the Kalman gain K will stabilise quickly and then
remain constant. Figure 4 shows the change pattern of
the Kalman gain of a 1-D Kalman filter.

Next, we consider the total estimation error led by
noise in a 1-D space. Assume that we add ∆d to
one location in either the x or y direction. Then, the
additional estimation error ∆e in the following nth step
can be represented as follows:

∆e = ((I − KH)F )nK∆d, n = 0, 1, 2, . . . , (2)

where I is an identity matrix, K is the Kalman gain, H is
an observing matrix, and F is the state transition model.
The trace of a user can be divided into x and y directions,
which means the moving trace of a user can be seen as
the combination of two traces from the 1-D space.

Figure 4 The change pattern of Kalman gain (see online
version for colours)

The Kalman filter has the capacity to deal with noise
because the expected value of noise is zero. As a result,
if we provide noise in the same direction as a real
location, the influence of fake locations can accumulate
and disturb the estimated result of the Kalman filter.
However, the value of ∆e will decrease exponentially
when n goes up: if we provide a fixed value ∆d to a
group of traces, the extra estimation error is a fixed value:∑

n((I − KH)F )nK∆d. We use λ∆d to represent this
fixed value. Suppose that we use N% of our reported
locations as the fakes. Since a fake location can be
considered as a real location adding ∆di, the average
estimation error of a trace is N% × λ∆di.

4.1.3 Fake locations reporting pattern

There are two options for reporting fake locations. The
first is to continuously report fake locations for some
time period followed by continually reporting the real
locations. The alternative is providing the fake locations
separately: the reporting time of the fake locations and
the real locations is mixed together. The estimation error
of Kalman filling at a location is the sum of errors caused
by previous fake locations. However, as the parameter
decreases rapidly, intensive reports of fake locations will
cause the remainder of the locations to be less protected.
Therefore, we will separately report fake locations to
protect the whole trace. A user will only provide intensive
fake location updates when protecting a specific sensitive
location and not the entire trace. Therefore, if a user
wants to protect a certain location, she can intensively
report some fake locations. Though, as for using fake
locations to distort the whole trajectory of a user, it is
better to report the fake locations separately.

4.1.4 The optimal fake location

We can view a person’s moving trajectories as a group
of points in two dimensions. Therefore, to find the
best fake locations at each point, we have to find the
maximum value of ∆x2 + ∆y2 for a particular speed
restriction. Suppose that (x0, y0), (x1, y1), and (x2, y2)
are three consecutive points in a trajectory. Assume that
(x, y) represents the corresponding fake location to point
(x1, y1). With the limitation of speed, the maximum
distance a user can reach in the time interval is R. We first
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join two points, (x0, y0) and (x2, y2), together, as shown
in Figure 3. The third location (x1, y1) would reside on
either the joined line or on one side of the line. The fake
location (x, y) should satisfy the following restrictions:

R = Smax ∗ ∆t (3)

(x − x0)2 + (y − y0)2 ≤ R2 (4)

(x − x2)2 + (y − y2)2 ≤ R2 (5)

Goal : maximise(
√

(x − x1)2 + (y − y1)2). (6)

If the current real position (x1, y1) is located in the
lightly shadowed region of Figure 3, then the best fake
location is at the point of intersection of two speed
limitation circles. Normally, a user makes a U-turn far
less than others. In order to reduce the complexity of
the algorithm, we still use the intersection point as an
approximate solution when the point (x1, y1) is in the
darkly shadowed region. Therefore, the best fake location
(x, y) can be computed as follows:

a = (
y2 − y0

x2 − x0
)2 + 1 (7)

q =
(x2 − x0)(x2 + x0) + (y2 − y0)(y2 + y0)

2(x2 − x0)
− x0 (8)

b = −2(y0 +
y2 − y0

x2 − x0
q), c = y2

0 − R2 + q2 (9)

(x, y) = (q + x0 − y1(y2 − y0)
x2 − x0

,
−b +

√
b2 − 4ac

2a
) (10)

or (x, y) = (q + x0 − y2(y2 − y0)
x2 − x0

,
−b −

√
b2 − 4ac

2a
).(11)

However, the best fake locations are obtained based on
the assumption of knowledge of the next location. If
we name current time t, then the best fake location of
t is determined by the real locations of t − 1, t, and
t + 1. Although we have found the best fake locations
of each reported point in a trace, realistically, users will
not provide each (x2, y2) to the application. We assume
that there is an application that can predict the next
position (x2, y2) by using a current real location and
a current instantaneous speed. The corresponding fake
location generation algorithm is given by Algorithm 2.

Among all of the optimal fake locations of a trace, we
note that the fake locations, which increase the errors of
Kalman filling, are always the fake locations at turning
points. In our method, we let each user’s application
record the distribution of the distances between each
of the real locations and their corresponding fake ones.
Therefore, reporting N% of the locations as fake means
finding a distance threshold D such that

∑
Dist(d ≥

D) = N%. At each time interval T, if the distance
between a fake and real location is greater than D, the
application will report this fake location, otherwise it will
report the real location. The corresponding algorithm is
presented by Algorithm 3.

4.2 Users travelling in a group

Now, we consider the scenario where a group of friends
are moving together. We need to address the following
issues:

• Who will report the fake locations

• How many fake locations should be reported

• How a group of users’ devices cooperatively protect
location privacy while guaranteeing quality of
service.

We will first present the solution for the simplest case
of two friends travelling together before expanding our
solution to multiple friends in a group.

4.2.1 Group of two friends

The probability of two users appearing together is
proportional to the closeness of them. We use the
distance distribution between two users (A and B) to
measure the closeness of them. We apply the concept
of mutual information to analyse the problem. The
historical location sets of A and B can be represented
by two random variables LA and LB . LA represents the
location set that A visited, and LB stands for the visited
location set of B. We use I(LA; LB) to represent the
mutual information between A and B’s location sets.
A high amount of mutual information between two users
means that they always appear in the same regions at the
same time.

The closeness of two users is subjective. We use a
predefined threshold to determine the state of being
together. We first compute the distance’s distribution of
two users. Then, we calculate the probability that two
users appear in the same region at the same short period
of time, based on a predefined threshold. The probability
represents the chance that the two users stay together.
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According to Information Theory, mutual
information can be equivalently expressed as
I(LA; LB) = H(LB) − H(LB |LA), where H(LB) means
the entropy of user B’s location set and H(LB |LA)
means, given A’s location set, the entropy of B’s
location set. This formula shows how much uncertainty
in guessing LB has been removed by knowing LA.
Therefore, if user A reports his location at time t
while B doesn’t, the uncertainty of those unreported
locations of B will be reduced since adversaries can
get more information from A’s locations. According
to the definition of mutual information, by increasing
the uncertainty of getting together, or by increasing
the probability of arriving at some location alone, the
location-binding mutual information between users will
become less.

A high amount of mutual information between A
and B also means a high value of Prob(LB |LA). The
adversary can guess the position of B at a certain time
t by Prob(LB) = Prob(LB |LA) × Prob(LA) . If we can
increase the uncertainty of A’s reported locations, then
B’s locations can be protected better and vice versa.

Our fake location generating method works as
follows: when the distance between A and his friend, B, is
less than a predefined being together distance threshold,
two users will report their real location and fake location
at the same time, in turns. For example, A reports his
real location at time t1, and B reports a fake location.
Then, at time t2, B reports the real location, and A
reports the fake one. Through this method, we reduce the
mutual information between two users and also increase
the uncertainty of reported locations.

4.2.2 Group of multiple friends

Now we consider the case where the user is travelling
with a group of friends. Unlike an online social network,
we can assume that the friends in this group have
a higher level of trust since they are friends in both
cyber-space and physical space. We can exploit this fact
to improve energy efficiency. We note that short range
data transmission between nearby nodes can consume
less energy than transmitting to the AP, and some users
in the group can enjoy the service provided by the server
without submitting any information simply by obtaining
it from their friends. Table 2 contains the notations used
in this part.

Assuming that there are k friends moving together, the
simplest solution is randomly choosing one user to report
real locations while others report the fake ones. However,
this solution contains the following problems.

• Since the user that is reporting the real location
needs to retransmit the service data to his friends,
how to assign the different roles (real location
reporter, fake reporter, and the silent user) to
different users is a problem.

• How to hide the generation pattern of fake
locations is another problem.

Table 2 Table of notations for group’s fake location
reporting policy

k Number of users in a group
e(i) Remaining energy of user i
RP (i) Probability of letting user i to submit real

position
Tol Users’ tolerance degree for service failure
ρ A parameter determined by k and Tor
ThresholdE A dynamically changed threshold,

below which the user does not need
to report locations

µ A predefined constant
Rs Service radius

• If the current real position submitter leaves the
group, who will take over the job?

When k friends make up a group, the users will
periodically exchange the remaining energy, e(i), (1 ≤ i ≤
k). Based on the exchanged consecutive remaining energy
and corresponding time stamps, the users can predict the
remaining energy of any others in the group at any time.
We want the real position reporting policy to be related
with remaining energy. Hence, if e(i) is the remaining
energy of user i, the probability of i reporting the real
location (RP(i)) to the server is:

RP(i) = ρ × e(i)∑
j=1,... ,k e(j)

, (12)

where ρ is a constant number determined by users. We
suppose that users of different services all have a service
failure tolerance degree, a percentage, assuming Tol. The
probability that no one reports the position at time t
should be smaller or equal to Tol since under such case
there is definitely no service.

(1 − ρ × e(i)∑
j=1,... ,k e(j)

)k ≤ Tol. (13)

As result, the parameter ρ can be computed as follows:

ρ = k(1 − Tol
1
k ). (14)

Hence, to any node i in the group, the reporting
probability is:

RP(i) =




1 for ρe(i)
∑k

j=1 e(j)
≥ 1

ρe(i)
∑k

j=1 e(j)
for others

. (15)

When the maximum distance among k users is less than
the predefined threshold, we consider that the k users
become a group. We assume that the service’s returning
data covers a circular region whose center is the reported
location and whose radius is Rs. In most applications,
the initial distance among users can be ignored, compared
with the Rs. In the very beginning, after k users join
a group, each user, whose remaining energy is greater
than an energy threshold ThresholdE , will virtually
determine a random walk path from the location. The
energy threshold is a dynamically changing value, which
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is determined by the remaining energy of all of the users
at time t.

ThresholdE = µ

∑
j=1,...k se(j)

k
, (16)

where µ is a predefined constant. For example, if we
define that the users whose remaining energy is less than
10% of the current average of the remaining energy,
the less remaining energy users do not need to make
a virtual random walk, then µ = 0.1. The maximum
distance between the end of the random walk and the
user’s current real position is γ × Rs, where γ is a
constant between 0 and 1. A large γ means having to
protect more privacy, but it also causes more transition
time (the time interval for letting user j report the real
position instead of the user currently submitting real
locations i).

Our fake location reporting algorithm works as
follows. We first select the user with the most remaining
energy to be the real location reporter. The remaining
users whose remaining energy is greater than ThresholdE

make a bias random walk. A bias random walk is when
the center of the random is not the current real location.
The advantage of doing this is that the adversary cannot
use the average value of the reported positions as the
group’s real location. After arriving at the determined
random location, the user begins to report the fake
trajectory. Considering that these k users may not join
the group at the same time, it is hard for the adversary to
determine which reported trajectory is the real one.

After a user is selected to report the real location, he
will continuously report the real position for a random
amount of time. Then, he makes a prediction about
the remaining energy of the other users. The next real
position submitter will be randomly selected based on
the distribution of RP (i). The current submitter will
send a special notice to the next submitter. Again, we
assume that the adversary is intelligent: he can use speed
limitations to filter out some fake locations, and he can
also use the speed limitations and moving patterns to
predict the identity of the real position submitter. After
receiving the special notice, the user will report a fake
trajectory that is travelling towards the real position.
During the period of travel, the previous submitter will
continuously report the real position. In order to disturb
the change pattern, each fake location submitter will
randomly make a choice between continuously moving
along the current fake path or moving to another fake
path. If a fake location submitter decides to transfer to
another fake path, he needs to send a special notice to
the other user and wait for the confirmation. If a fake
submitter receives the notice, he will send a confirmation
and continue walking along his current fake path.

Consider a situation in which the current real location
submitter may suddenly leave the group. If this happens,
the real location submitter needs to hand over the job to
the nearest user (based on the reported locations) or the
user whose remaining energy is less than the threshold
ThresholdE .

5 Additional discussion

A consequence of uploading a fake location to the
adversary is that information associated with the fake
location will be transmitted to the user and his friends.
This can be mitigated as follows.

We suppose that users’ mobile-phones have
been equipped with at least two kinds of wireless
communication devices: one is used to access
service providers, and the other is a short-distance
communication device, such as Bluetooth. In order to
minimise the influence of using a fake location, we will
partially use the service data of nearby users. In the
friend-locator application, when a user sends a fake
location to the server for trace protection, the application
will also send (∆x,∆y) within the package. Therefore,
the user’s friends will know the accurate location of the
user.

Our method also allows us to provide finer grained
location privacy based on social relationships. We can
assume that close friends share more keys than regular
acquaintances. We can encrypt (∆x,∆y) by multiple
layers. For instance, we assume that the maximum
number of keys shared by two users is U . Then, we
randomly pick up U real values such that

∑U
i=1 ∆xi =

∆x and
∑U

i=1 ∆yi = ∆y (|xi| > |xi−1| and |yi| > |yi−1|).
We also sort the key based on the number of keys being
shared. Then, we assign label 1 to the key shared the
least amount times, and we assign label U to the key that
is the most commonly used. Then, we encrypt different
(xi, yi) by the corresponding labeled keys. Whenever
decrypting a layer, the users can obtain a little more
information. As a result, the location privacy will be
different to different people. The closeness level between
different friends can be defined either manually, by
having the user assign specific weights for each of his
friends, or automatically, based on the frequency of their
interactions.

6 Evaluation

To perform the simulations, we first established a
Cartesian coordinate system where the point (10, 10) is
the beginning of a user’s trajectory. We set the initial
user speed to be one unit distance per unit time, with
a maximum speed of 7 units. At each step, we provide
normal distributed noise as state noise and Gaussian
distributed noise as observing noise. We use state noise
to represent the speed and direction change of a user.
We used both observation noise and state noise to
randomise the movement change pattern of a user. After
generating the locations at each step, we computed the
statistical average speed of a user. The average speed
is changed from 3.42 units of distance to 3.86 units of
distance. In the experiments, we vary the observing time,
continuously unreported locations, and the closeness
between two friends.
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6.1 Single user

Here, we compare our scheme against the location
omission strategy. Under the location omission strategy,
the user will pick N% of their locations and not
report them. In Figure 5, we intuitively presented the
comparison result of our method and the location
omission method. The figure shows the original trajectory
of a user and the trajectory estimation result after using
our fake locations-based privacy preserving method.
Figure 5 is a part of a random trajectory consisting of
2000 points. We select 10% as a fake location reporting
ratio, and we assume that the maximum speed is 7 units
of distance. According to the statistics of our data, the
average speed of a user is 3.47 units of distance. From
Figure 5, we can see that the Kalman filling result is
inaccurate by our choice of fake locations.

Figure 5 One user defense (see online version for colours)

In order to evaluate the effectiveness of our proposed
method to different random trajectories, we conducted
the following simulation: we fixed the maximum speed
of a user as 7 units of distance per time step and the
initial position as (10, 10). We leave the other parameters
randomised, and we generate 1000 different trajectories.
The average speed of these traces vary from 2.73 units
of distance to 5.39 units of distance. Figure 6 shows the
average estimation error per observation time between
protecting via fake locations and unreported locations.
In this experiment, we use 1000 random trajectories, and
we observe each trajectory 2000 times. We compute both
standard and squared distance by using our method and
the other method. From Figure 6, we can clearly see that
our proposed method can significantly improve the trace
privacy of users.

Figure 6 Avg. error for uploading fake locations and not
reporting (see online version for colours)

Next, we want to show that our proposed method
is always effective, which means providing similarly
averaged errors to the trajectory, regardless of the length

of adversaries’ observations. We then generate 1000 more
random traces, but this time the observation time of each
trace changes from 100 steps to 105 steps. During the
simulation, we use 10% as the value of the fake location
reporting ratio, and we force users’ maximum speed to be
7 units of distance per time step. We compute the average
error’s change pattern as time goes on. From Figure 7,
we can find that the average distance approaches a
constant number. This result agrees with our research
result in Section 4.

Figure 7 The relation between time and estimation error (see
online version for colours)

6.2 A group of users

Since the simplest case of a group of users moving
together is that two users are travelling together, we only
use two users in our simulation. However, since the two
users case results in the lowest amount of privacy by
using our algorithm, if the results in the two users case is
good, the solutions in the k users’ group would definitely
be better. Here, the adversary will compute the closeness
between two users using a closeness metric. In this metric,
if the distance between two users is less than a threshold,
then we regard them as being together. If the closeness of
two users is k%, then when one user does not report her
locations, there is a k% probability that she is near her
friend.

In Figure 8, we let the number of continuously
unreported locations vary from 1 time step to 50 time
steps. We compute the average estimation error among
1000 random trajectories, and to each trajectory, we
observed 1000 steps. From the image, we can see that
when users do not report their locations in a short period
of time, using Kalman filling produces better estimation
results. However, if users do not report their current
position for a relatively long period of time, using the
location of users’ friends has a better estimation result.

In this part, we will illustrate the results before and
after using our proposed two user privacy-preserving
method, shown in Figure 9. The picture in Figure 9(a)
shows the original trajectories of two users, and the
picture on the right-hand side is the histogram of their
distance. If we defined the distance between them as
less than 4 units of distance apart, then 64% of their
locations are satisfied. Although after using our method,
the percentage reduces to 38%. The image of Figure 9(c)
shows the shape of two users’ trajectories after using our
method.
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Figure 8 Avg. error with different continuously unreported
locations (see online version for colours)

Figure 9 The trajectories and distance histogram between two
friends before and after using our proposed method.
Upper left (a) are the trajectories before using fake
locations. Bottom left (c) is the result after using
fake locations. Upper right (b) and bottom right (d)
show the difference between users’ closeness before
and after using our proposed method (see online
version for colours)

In order to see the relation between our proposed method
and the distance standard used to discern two users
from being together, we test 1000 pairs of users. For
each pair, we observe them 1000 times. The average
speed of these tested trajectories varies from 2.82 units of
distance to 3.76 units of distance. During the generation
of these traces, we define the maximum speed as 5 units
of distance per time step. Figure 10 shows the change
pattern of the average increased estimation error when
the standard closeness distance changes from 1 unit of
distance to 10 units of distance. When an adversary
increases the distance standard, his guessing result will
depend more on the locations of a user’s friends since the
closeness of the user and her friends will be increased,
leading to an increase in the estimation error.

Figure 10 Avg. error under different closeness metrics
(see online version for colours)

7 Conclusion

In this paper, we consider the problem of improving
location privacy for MSNs. We introduce a new privacy
attack where the adversary uses both historic movements
and friendship information to estimate a user’s trajectory.
Our solution allows a user to upload fake locations to
protect his privacy. When there is a group of friends
moving together, our solution also provides the fake
location uploading policy, which considers both the
remaining energy of users and the privacy requirement. In
our future work, we intend to consider the incorporation
of mobility models, such as Levy-walks, to improve
our scheme. Moreover, we also want to apply social
relationship-based methods to the existing privacy-
preserving techniques. Since a single user’s privacy should
be different to different people, we can design some
social-based privacy-preserving algorithms.
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